Progression in Human Breast Cancer Cells Cyclin D1 Is Necessary for Tamoxifen-Induced Cell Cycle

نویسندگان

  • Maricarmen D. Planas-Silva
  • Robin L. Kilker
چکیده

Despite the success of tamoxifen in treating hormoneresponsive breast cancer, its use is limited by the development of resistance to the drug. Understanding the pathways involved in the growth of tamoxifen-resistant cells may lead to new ways to treat tamoxifen-resistant breast cancer. Here, we investigate the role of cyclin D1, a mediator of estrogendependent proliferation, in growth of tamoxifen-resistant cells using a cell culture model of acquired resistance to tamoxifen. We show that tamoxifen and 4-hydroxytamoxifen (OHT) promoted cell cycle progression of tamoxifen-resistant cells after growth-arrest mediated by the estrogen receptor downregulator ICI 182,780. Down-regulation of cyclin D1 with small interfering RNA blocked basal cell growth of tamoxifenresistant cells and induction of cell proliferation by OHT. In addition, pharmacologic inhibition of phosphatidylinositol 3-kinase/Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 pathways decreased basal cyclin D1 expression and impaired OHT-mediated cyclin D1 induction and cell cycle progression. These findings indicate that cyclin D1 expression is necessary for proliferation of tamoxifen-resistant cells and for tamoxifen-induced cell cycle progression. These results suggest that therapeutic strategies to block cyclin D1 expression or function may inhibit development and growth of tamoxifen-resistant tumors. (Cancer Res 2006; 66(23): 11478-84)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-195: Thymoquinone Increases Efficacy of Tamoxifen Induced Apoptosis in Human Breast Cancer MCF-7 Cells: In Vitro

Background: The objective of this study is to evaluate combined effect of Thymoquinone (The main active component of black seeds) with Tamoxifen drug on apoptosis of human breast cancer MCF-7 cells (Noninvasive human breast cancer cell line, estrogen receptor positive). Materials and Methods: The human breast cancer MCF- 7 cells were treated with Tamoxifen (2 μM) alone or in combination with Th...

متن کامل

Tamoxifen functions as a molecular agonist inducing cell cycle-associated genes in breast cancer cells.

Tamoxifen is a widely used breast cancer therapeutic and preventative agent. Although functioning as an estrogen antagonist at the cellular level, transcriptional profiling revealed that at the molecular level, tamoxifen functions largely as an agonist, virtually recapitulating the gene expression profile induced in breast cancer cells by estrogen. Remarkably, tamoxifen induces transcription fa...

متن کامل

Effects of Baneh (Pistacia atlantica) gum on Human Breast Cancer Cell Line (MCF-7) and Its Interaction with Anticancer Drug Doxorubicin

Pistacia atlantica is one of the species of Anacardiaceae that grows in the wild in different regions of Iran. Traditionally, anacardiaceae family has antibacterial, fungicidal and cytotoxic properties. Therefore, the present study was designed to investigate the possible cytotoxic and anti-proliferative properties of Baneh gum. Cytotoxicity of the plant gum was determined using MTT assay on MC...

متن کامل

Inducible overexpression of cyclin D1 in breast cancer cells reverses the growth-inhibitory effects of antiestrogens.

The development of endocrine resistance in previously sensitive, estrogen receptor-positive breast cancers is a major limitation in the treatment of breast cancer. Because antiestrogens have a cell cycle-specific action on breast cancer cells and influence the expression and activity of several cell cycle-regulatory molecules, the development of aberrant cell cycle control mechanisms is a poten...

متن کامل

Cell cycle progression stimulated by tamoxifen-bound estrogen receptor-alpha and promoter-specific effects in breast cancer cells deficient in N-CoR and SMRT.

Estrogen receptor alpha (ERalpha) mediates the effects of estrogens in breast cancer development and growth via transcriptional regulation of target genes. Tamoxifen can antagonize ERalpha activity and has been used in breast cancer therapy. Tamoxifen-bound ERalpha associates with nuclear receptor corepressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) at ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006